Electric Contact/ Limit Switch Assembly

Limit Switch Contact Assemblies

Application

Limit switch contact assemblies open or close electrical or pneumatic circuits.

Mode of operation

The construction of limit switch contact assemblies allows the continued operation of the actual value pointer beyond the limit setting pointer, after the limiting signal transmission has occured. The limit setting pointers can be adjusted on the whole range of the scale. Please consider the references and recommendations made in "Contact adjustment ranges" (page 4).
The limit setting pointer is adjusted to the value at which the switching operation is to take place, from outside with a removable key. With limit switch contact assemblies in NCS 63 with reed contact, the adjustment is generally carried out manually after removal of the bayonet ring. With e-Gauges ${ }^{\circledR}$ the reference values are programmed.
Regulations according to DIN 16085 (pressure gauges) and DIN 16196 (thermometers) apply to limit switch contact assemblies with 1 and 2 contacts.
In addition, we also deliver limit switch contact assemblies with 3 or 4 contacts. In this case, special adjustment regulations regarding adjustment ranges, switching hysteresis and superimposed adjustability are necessary.
Further information on the above mentioned and on deliverable limit switch contact assemblies and others, can be found in the data sheets with the last digits .90 or are given upon request.

Limit switch contact assemblies

We differ the following models:	
1. Direct (electromechanical)	Model
1.1 Standard contact	S
1.2 Magnetic contact	M
1.3 Micro switch	MS
2. Indirect (contact-free)	
2.1 Electronic contact	E
2.2 Inductive contact	I
2.3 Pneumatic contact	P
2.4 Reed contact	R
2.5 e-Gauge	eG

Definitions

Contact load

Allowed maximum values of the electrical load of a contact.

Switching pressure

The switching pressure is the pressure of the medium at the moment of activation of the switching function. (Source: DIN 16 085)

Switching point

The switching point is the value on the scale at which the switching function is activated.
Switching direction (direction of action of the switching function)
The switching direction is marked by the movement of the actual value pointer at which the switching operation proceeds: -> clockwise switching direction with rising pressure and
-> anticlockwise switching direction with falling pressure

Switching function

We have defined 3 switching functions:

Make contact (code number 1)

Break contact (code number 2)

Change-over contact (code number 3)

Contact makes, when the pointer is moving clockwise and the adjusted limit value is exceeded.

Contact breaks, when the pointer is moving clockwise and the adjusted limit value is exceeded.

One contact breaks and one contact makes at the same time (or immediately one after the other), when the adjusted limit value is exceeded.

see "Switching functions" on page 5

Switching accuracy (accuracy of the switching operation)
The switching accuracy indicates the deviation of the switching pressure from the adjusted limit value in the defined switching direction. According to DIN 16085 , it should not exceed the 1.5 -fold of the error limits of the pressure measuring instrument.

Switching difference

The switching difference is the difference between the switching points of two limit values.
The minimum distance between two switching points is the possible minimum switching difference.
Switching pressure reversal error (switching hysteresis)
"The switching pressure reversal error is the difference of the switching pressures at the moment of activation of the switching function of a contact during rising and falling pressure, but unchanged reference value of the switching pressure."
(Source: DIN 16 085)

Information on the selection

Installation options for limit switch contact assemblies

Pressure gauge / thermometer model Nominal case size

- Bourdon tube pressure gauges $63,100,160,96 \times 96,144 \times 144$
- Differential pressure gauges 100,160
- Diaphragm pressure gauges

100, 160

- Capsule gauges for low pressure

100 (e-Gauge ${ }^{\oplus}$ only)

- Gas-actuated thermometer
$100,160,96 \times 96,144 \times 144$

Contact adjustment ranges

The DIN standards 16085 (pressure gauges) and DIN 16196 (thermometers) apply in connection with the instrument standards DIN EN 831-1/-3 (pressure gauges) resp. DIN EN 13 190 (thermometers).
As further loads act on pressure gauges / thermometers with limit switch contact assemblies, we have defined the range in which limit switch contact assemblies should work optimally and are adjusted ex works, according to the standards as follows:
Limit switch contact assemblies with 1 contact
Adjustment ranges:
$\begin{array}{ll}\text { S/E/I/P-contact } & 10-90 \%(-) \\ \text { M-contact } & 15-85 \%(---)\end{array}$

Outside the defined ranges, larger switching inaccuracies, among others, and larger or minor switching pressure reversal errors can occur.
The greater difficulty with magnetic contacts is that when decreasing the magnetic forces during adjustment, the defined maximum contact load can not be fully used.
With magnetic contacts it is generally not possible to combine a maximum contact load with a minimum skipping behaviour (minor magnetic force).

Switching difference

The switching difference between two switching points has to be larger than the switching pressure reversal error, and with magnetic contacts it additionally has to be larger than the skipping behaviour, so that the switching points can be differentiated reliably.

In practice we recommend Limit switch contact as- semblies	Switching function	Switching difference
S, E, I, P	11,22	> switching pressure reversal error
	12,21	$\geq 2 \%$ of the span
M	11,22	$\geq 6 \%$ of the span
	12,21	$\geq 12 \%$ of the span

Minimum spans

Please also note the minimum spans for the respective instrument models (see page 5) which depend, among others, on the directive force of the measuring unit.

Information in an order

For an optimal functioning of the instruments with limit switch contact assemblies, you should indicate in addition to the ordering code:

- the switching pressure/s,
- the switching range/s, in which the contact/s is/are adjusted, if it lies/they lie beyond the adjustment ranges defined by us,
- if an anticlockwise switching direction is requested.

Detailed information on the ordering code can be found in the data sheets of the respective instrument model with the last digits . 90 .

Special solutions

If your operating conditions lie beyond these limits, please do not hesitate to contact us and we will work out an individual solution, adjusted to your conditions.

Special pressure gauges with limit switch contact assemblies	
Model: Case: Ring: Special equipment: Data sheet:	RChE stainless steel snap-in window (turnable) construction type tested acc. to EN 562 , 1 x inductive contact, 11 acc. to EN ICE 60 497-5-6 connection $1 / 4$ " NPT 1231-9.2
Model: Case: Ring: Special equipment: Data sheet:	RChg, RChgOe, RChgN stainless steel crimped-on ring, stainl. stee gas density monitors for SF_{6}-gas give alarm in case of leakage. The instruments are adjusted for the particular case of application to calibration pressure, switching points and ambient temperature. 1902
Model: Case: Ring: Special equipment: Data sheet:	RCh 100 / 160 with e-Gauge ${ }^{\text {e }}$ RChG 100/160 with e-Gauge ${ }^{\circledR}$ stainless steel bayonet ring, stainless steel the e-Gauge ${ }^{\circledR}$ operates absolutely contact-free and turns a "normally" indicating instrument with NCS 100/160 into a multifunctional instrument with 2 digital switching outputs and an analogue output signal of $4 \ldots 20 \mathrm{~mA}$. 1201.93

1 Contact	$\begin{aligned} & \text { Standard / } \\ & \text { Magnetic S, M } \\ & \hline \end{aligned}$			Electronic E		Inductive I		Pneumatic P		Reed R		Micro switch MS		e-Gauge ${ }^{\text {e }}$ e ${ }^{\text {a }}$
Break contact		S2	M2		E2	$\begin{array}{r} -2 \underbrace{+} \\ { }_{12} \\ \hline \end{array}$	12	$\begin{array}{r} -59^{4} \\ 1 \\ \hline \end{array}$	P2	$\int_{\text {bn wo }}$	R2	-		
Make contact		S1	M1		E1		11		P1	$\prod_{0} \int_{0}$	R1	-		
Single change-over	Standard / Magnetic S, M											Micro swit	h MS	
		S3	M3									$\left.\prod_{2}^{4}\right]_{2}$	MS3	
2 Contacts ${ }^{1)}$	Standard / Magnetic S, M			Electronic E		Inductive I		Pneumatic P		Reed R		Micro switch MS		e-Gauge ${ }^{\text {e }}$ eG
1. and 2. break contact		S22	M22		E22		122		s.b. ${ }^{2)}$		R22	-		eG22
1. break contact 2. make contact		S21	M21		E21		121		P21		R21	-		eG21
1. and 2. make contact		S11	M11		E11		111		s.b. ${ }^{\text {) }}$		R11	-		eG11
1. make contact 2. break contact		S12	M12	或:	E12		112		P12	$\prod_{w \operatorname{mgng}} \int_{\mathrm{gb}}$	R12	-		eG12

Minimum spans							
Model limit switch contact assembly	Measuring instrument		Meas.	Number of contacts			
			unit	1	2	3	4
S (Standard contact)	Bourdon tube pressure gauges	NCS 63	bar	upon request	upon request	-	-
		NCS 100, $96{ }^{2}$	bar	1.0	1.6	2.5	upon request
		NCS 160, $144{ }^{2}$	bar	1.0	1.6	2.5	2.5
	Differential pressure gauges ${ }^{1)}$	DiRZ... 160	bar	1.0	1.6	upon request	-
	Diaphragm pressure gauges	NCS 100, flange-Ø 160	mbar	60	100	160	160
		NCS 100, flange-Ø 100	bar	0.6	0.6	0.6	0.6
		NCS 160, flange-Ø 160	mbar	60	100	160	160
		NCS 160, flange-Ø 100	bar	0.6	0.6	0.6	0.6
	Thermometers	NCS 100, 160	${ }^{\circ} \mathrm{C}$	no minimum span for standard temperature ranges			
M (Magnetic contact)	Bourdon tube pressure gauges	NCS 63	bar	2.5	4.0	-	-
		NCS 100, $96{ }^{2}$	bar	1.6	2.5	4	upon request
		NCS 160, 144^{2}	bar	1.6	2.5	4	4
	Differential pressure gauges ${ }^{1 /}$	DiRZ... 160	bar	1.6	4.0	upon request	-
	Diaphragm pressure gauges	NCS 100, flange-Ø 160	mbar	100	160	250	250
		NCS 100, flange-Ø 100	bar	0.6	0.6	2.5	2.5
		NCS 160, flange-0 160	mbar	100	160	250	250
		NCS 160, flange-0 100	bar	0.6	0.6	2.5	2.5
	Thermometers	NCS 100, 160	${ }^{\circ} \mathrm{C}$	no minimum span for standard temperature ranges			
E (Electronic contact)	Bourdon tube pressure gauges	NCS 63	bar	2.5	4.0	-	-
		NCS 100, $96{ }^{2}$	bar	1.0	1.6	2.5	upon request
		NCS 160, $144{ }^{2}$	bar	1.0	1.6	2.5	upon request
	Differential pressure gauges ${ }^{1 /}$	DiRZ... 160	bar	1.0	1.6	upon request	-
	Diaphragm pressure gauges	Flange-Ø 160	mbar	60	60	60	upon request
		Flange-Ø 100	bar	0.6	0.6	0.6	upon request
	Thermometers	NCS 100, 160	${ }^{\circ} \mathrm{C}$	no minimum span for standard temperature ranges			
(Inductive contact)	Bourdon tube pressure gauges	NCS 63	bar	2.5	4.0	-	-
		NCS 100, $96{ }^{2}$	bar	1.0	1.6	2.5	upon request
		NCS 160, $144{ }^{2}$	bar	1.0	1.6	2.5	upon request
	Differential pressure gauges ${ }^{1 /}$	DiRZ... 160	bar	1.0	1.6	upon request	-
	Diaphragm pressure gauges	Flange-Ø 160	mbar	60	60	60	upon request
		Flange-Ø 100	bar	0.6	0.6	0.6	upon request
	Thermometers	NCS 100, 160	${ }^{\circ} \mathrm{C}$	no minimum span for standard temperature ranges			
P (Pneumatic contact)	Bourdon tube pressure gauges	NCS 100, $96{ }^{2}$	bar	1.0	-	-	-
		NCS 160, $144{ }^{2}$	bar	1.0	1.6	-	-
	Diaphragm pressure gauges	NCS 100, flange-Ø 160	mbar	60	-	-	-
		NCS 100, flange-Ø 100	bar	0.6	-	-	-
		NCS 160, flange-Ø 160	mbar	60	60	-	-
		NCS 160, flange-Ø 100	bar	0.6	0.6	-	-
R (Reed contact)	Bourdon tube pressure gauges	RSCh 63, RCha 63	bar	2.5	2.5	-	-
MS (Micro switch)	Bourdon tube pressure gauges	NCS 100	bar	2.5	upon request	-	-
eG (e-Gauge ${ }^{\text {® }}$)	Bourdon tube pressure gauges	RCh/RChG 100	bar	0.6	0.6	-	-
	Capsules	KPCh / KPChG 100 / 160	mbar	100	100	-	-
	Thermometers	TBiSCh / TBiGelCh 100 / 160	${ }^{\circ} \mathrm{C}$	no minimum span for standard temperature ranges			

[^0]

Application / Operating conditions

Installation in case-Ø (NCS)

Limit switch contact assemblies S

- The mechanism for limiting signal transmission in limit switch contact assemblies with standard contacts consists of the adjustable limit setting pointer, connected with the sustainer that holds a contact pin, and the wiper that holds the second contact pin, and that is moved by the actual value pointer.
- The switching operation takes place, when the actual value pointer and the limit setting pointer are superimposed.
- The contact pins get in contact or are separated.
- The torque acting on the actual value pointer is low, so that the contacts switch exactly at the adjusted reference value.

Standard contacts are suitable, when:

- the instrument is protected from vibrations and no pulsations occur, as otherwise accidental switchings can take place.
- the contact pins do not contaminate or oxidise, for example through aggressive atmosphere.

For technical data see page 8

$63,100,160,96 \times 96$, und 144×144
Limit switch contact assemblies with standard contacts can only be mounted in instruments without case filling.

Impulse-controlled multifunctional relays of the type series MSR:

- increase the switching safety and allow for a higher frequency of operation that is susceptible to external influences, such as aggressive atmosphere, contamination or oxidation of the contact pins.
- reduce the contact load.
- reduce accidental switchings caused by vibrations / pulsations, through an integrated delayed release of 450 ms .

For details see data sheet 9521

Limit switch contact assemblies M

- In comparison to limit switch contact assemblies with standard contacts, limit switch contact assemblies with magnetic contacts additionally have a locking varnish protected screwable permanent magnet that is mounted on the sustainer of the limit setting pointer.
- The permanent magnet reinforces the contact force and protects the contacts against deflagration caused by electric arc influences.
- As the contacts approximate, the contact making is sharply accelerated by the magnet, resp. decelerated at separation of the contacts. This skipping behaviour can constitute 2 to 5% of the span, depending on the directive force of the measuring element and the adjusted magnetic force.

Magnetic contacts can be applied almost anywhere, as they are, to a large extent, unsusceptible to vibrations.

- Switching capacity, switching safety and contact load are considerably higher than those of standard contacts.

For technical data see page 8

$63,100,160,96 \times 96$, und 144×144
Limit switch contact assemblies with magnetic contacts are restrictedly suitable for instruments with case filling, when using a multifunctional relay of the type series MSR (see below).
Impulse-controlled multifunctional relays of the type series MSR:

- should be used for instruments with case filling. They reduce the risk of oil contamination caused by the electric arc.
- increase the switching safety and allow for a higher frequency of operation that is susceptible to external influences, such as aggressive atmosphere, contamination or oxidation of the contact pins.
- reduce the contact load.
- reduce accidental switchings caused by vibrations / pulsations, through an integrated delayed release of 450 ms .

For details see data sheet 9521
-

	Limit switch contact assemblies E	Limit switch contact assemblies I
Mode of operation	- The mechanism for limiting signal transmission in limit switch contact assemblies with electronic contacts consists of a slot-type initiator with integrated switching amplifiers (PNP-output) and a control lug. - The slot-type initiator is mounted on a sustainer that is connected to the limit setting pointer, while the control lug is moved by the actual value pointer. - Contact makes, when the control lug dips into the slot-type initiator. Contact breaks, when the control lug leaves the slot-type initiator. - The switching operation takes place when the control lug is positioned in the middle of the slottype initiator. - The torque acting on the actual value pointer with the control lug is low, so that the switching operation takes place precisely at the adjusted reference value.	- The mechanism for limiting signal transmission in limit switch contact assemblies with inductive contacts consists of a slot-type initiator (displacement transducer according to DIN EN 60 947-5-6 (NAMUR)), a control lug and a relay in a downstreamed switch amplifier (application in hazardous areas) or a multifunctional relay of the type series MSR-I (application in non-hazardous areas). Switch amplifiers, resp. multifunctional relays, do not belong to the scope of supply of an instrument with inductive contacts. - The displacement transducer is mounted on a sustainer that is connected to a limit setting pointer, while the control lug is moved by the actual value pointer. - The slot-type initiator is basically a transistoroscillator whose oscillator coils are arranged on both sides of the slot-type initiator. - When the control lug dips into the slot-type initiator, it has high impedance (low control circuit $\leq 1 \mathrm{~mA}$), the relay in the downstreamed switch amplifier is de-energised and contact breaks. When the control lug leaves the slot-type initiator, it has low impedance (high control circuit $\geq 3 \mathrm{~mA}$), the relay operates and contact makes. - The torque acting on the actual value pointer with the control lug is low, so that the switching operation takes place precisely at the adjusted reference value.
Application / Operating conditions	Electronic contacts are suited for every industrial application. - They are less susceptible to accidental switchings caused by vibrations / pulsations than standard contacts. - They are wear-resistant (contact-free switching) and corrosion-free (all electrical components are moulded in cast resin and encased waterproof in a plastic case). - As the slot-type initiator is a 3 -wire slot-type initiator with PNP-switching output, an SPS, an optocoupler or other electronical evaluation units with small voltages and currents can be directly activated. For technical data see page 9	Inductive contacts, in connection with our multifunctional relays of the type series MSR-I, are suited for every industrial application. - They are wear-resistant (contact-free switching) and corrosion-free (all electrical components are moulded in cast resin and encased waterproof in a plastic case). - According to IEC 61 508, slot-type initiators can be applied up to SIL 2. For technical data see page 9
Installation in case-Ø (NCS)	$63,100,160,96 \times 96$, und 144×144	$63,100,160,96 \times 96$, und 144×144
Case filling	Limit switch contact assemblies with electronic contacts can be mounted in instruments with case filling.	Limit switch contact assemblies with inductive contacts can be mounted in instruments with case filling.
Relays	-	Impulse-controlled multifunctional relays of the type series MSR-I: - are applied in facilities where no Ex-protection is required. - reduce accidental switchings / pulsations through an integrated switching delay of 450 ms . For details see data sheet 9531
Ex-Protection	-	- When using our switch amplifiers KF..-SR2-.. the equipment corresponds to the type of protection intrinsic safety i. It is II2G EExia IIC T6-classified and is approved for use in hazardous areas. - The switch amplifiers have to be installed outside the hazardous area. - EC-type-examination Certificates of the Federal Technical Institute (Phyiskalisch Technische Bundesanstalt = PTB) on the intrinsic safety of the used slottype initiators and switch amplifiers, are available. - The allowed line length between limit switch contact assembly and downstream unit is, in consideration of the intrinsic safety according to PTB, approximately 3 km . - EC-type-examination Certificates can be downloaded from www.armaturenbau.com or www. manotherm.com or can be supplied upon request. For details (switch amplifiers) see data sheet 9532

Application / Operating conditions

Installation in

case-Ø (NCS)
Case filling

Ex-Protection

Technical data
Measurement technique

CE-Marking

Limit switch contact assemblies P

- The mechanism for limiting signal transmission in limit switch contact assemblies with pneumatic contacts consists of a stream-diffuser-system, a control lug and a pneumatic low pressure switch (PP-transformer).
- The stream-diffuser system is mounted on a sustainer that is connected to the limit setting pointer, while the control lug is moved by the actual value pointer.
- In this system, a reduced permanent air flow is conducted from the jet nozzle into the diffuser. The low pressure signal (> 25 mbar) captured by the diffuser, is conducted to the pre-amplifier of the low pressure switch. This causes the micro switch to connect the hoses and thus produces an actuated output-signal of 1.4 bar at the outlet. When the actual value pointer reaches the limit setting pointer, the control lug, moved by the actual value pointer, interrupts the air flow in the stream-diffuser-system. Through failure of the low pressure signal at the pre-amplifier, the switching is triggered. The micro switch moves back into its initial position and ventilates the connection.
Pneumatic contacts are characterised by high switching accuracy and are relatively unsusceptible to vibrations.

$100,160,96 \times 96$, und 144×144

Limit switch contact assemblies with pneumatic contacts do not work in fluid filled instruments (air flow).
Limit switch contact assemblies with pneumatic contacts are absolutely explosion-resistant, suitable for zone 0.

Air consumption:	$<30 \mathrm{I} / \mathrm{h}$
	PP-transformer: $<40 \mathrm{NI} / \mathrm{h}$ at 1.4 bar
Operating air pressure: Purity specification for control air: Mech. durability:	$1.4 \mathrm{bar}^{ \pm 0,1} \mathrm{bar}$
	$\leq 0.04 \mathrm{~mm}$
	PP-transformer: ca. 10^{8} switching cycles

Switching pressure

 reversal error: Switching accuracy: Ambient temperature:
\leq accuracy class

 $\leq 1.5 \times$ accuracy class $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$Measuring instruments with pneumatic contacts do not fall within the CE-marking obligation.

- More than 2 contacts are not deliverable.
- Instead of the pneumatic low pressure switch (PP-transformer) a pneumatic / electrical converter (PE-transformer) can also be applied. This is recommended when connecting pneumatic and electrical instruments and for monitoring signals over greater distances, in order to avoid delays.
- By replugging the hose bridges, the switching functions P11 / P22 can be reversed.

Limit switch contact assemblies R

- The reed contact is a fast bistable special switch that can be applied for switching of low-level signals in the $m V$ - resp. $\mu \mathrm{A}$-range.
- It consists of 2 contact studs made of ferromagnetic material that under inert atmosphere are remelted hermetically dense in a glass tube and are mounted turnable on a conductor plate behind the dial. When approaching a sufficiently strong magnetic field at the actual value pointer, both contact studs make use of a reversal polarity and thus activate the contact.
- A permanent magnet behind the glass tube provides for maintenance of the switching function, when the actual value pointer moves on.
- Manual adjustment of the reference values after removal of the bayonet ring; with case configurations "Fr" and "rFr", reference values are adjusted from the outside with a removable key.

Compared to electromechanical contacts (S, M) reed contacts have the following advantages:

- Contact-free switching at reliable contact making
- Small dimensions

63

Limit switch contact assemblies with reed contacts can only be applied for instruments without case filling.
Possible, when using intrinsically safe switch amplifiers, as they are passive electrical equipment without storage properties. No marking according to ATEX; a manufacturer's declaration can be issued.
Switching capacity max.: $10 \mathrm{~W} / 10 \mathrm{VA}$
Switching voltage max.: $\quad 75 \mathrm{~V}$ DC, 50 V AC
Switching current max.: $\quad 0.5 \mathrm{~A}$ at direct or alternating voltage and pure ohmic load Adjustment range: $\quad 10 \%$ to 90% of the full scale
ca. $10^{5}-10^{6}$ switching cycles

Switching pressure

reversal error:
max. 2.5 \% of the span $\leq 1.5 \times$ accuracy class $\begin{array}{ll}\text { Switching accuracy: } & \leq 1.5 \times \text { accuracy } \\ \text { Ambient temperature: } & -30^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C}\end{array}$

Measuring instruments with reed contacts basically bear the CE-mark for electromagnetic compatibility.

- More than 2 contacts are not deliverable.
- Single change-over contact R3

	Limit switch contact assemblies MS	Limit switch contact assemblies eG
Mode of operation MS e-Gauge ${ }^{\circledR}$	- The micro switch is a snap switch in which a spring element sharply controls the contacts. It is attached to the movement. - Micro switches are basically of the 1-pin changeover contact type. They close or open the electrical circuitries according to the direction of motion at the adjusted limit values.	- e-Gauge ${ }^{\circledR}$ is a patented, revolutionary sensor accessory for analogue pointer instruments, such as pressure gauges and thermometers. - Via angle encoder with inductive tapping the e-Gauge ${ }^{\circledR}$ turns almost any pressure gauge or thermometer into a switch and transmitter. - The e-Gauge ${ }^{\circledR}$ operates contact-free and turns a "normally" indicating instrument NCS 100 or 160 with bayonet ring case into a multifunctional instrument with standard 2 digital NPN-switching outputs and an output signal of $4 . . .20 \mathrm{~mA}$. Any information on the e-Gauge ${ }^{\circledR}$, especially on the analogue output $4 \ldots 20 \mathrm{~mA}$, can be found in the data sheets of the respective instruments with the last digits .93 ; for example bourdon tube pressure gauges RCh 100 / 160 resp. RChG 100 / 160 with e-Gauge ${ }^{\circledR}$, data sheet 1201.93.
Application / Operating conditions	- Micro switches are especially suitable where a high breaking capacity is required. - Furthermore, they are characterised by their vibration resistance and their long durability. - Due to the required minimum operating forces, movements with assembled micro switches are only restrictedly suitable for low measuring ranges and have a lower switching accuracy.	- Operates absolutely contact-free. - Nearly no directive force of the measuring unit required. Only the weight of the pointer increases slightly, due to the electronic component. - No influence on the indication because of spirals, which is why they can also be applied for capsule gauges and bimetal thermometers. - The limit values are programmed. - Both limit values can be programmed in such a way that they switch at the same reference value.
Installation in case-Ø (NCS)	100	100, 160
Case filling	Limit switch contact assemblies with micro switches can only be applied for instruments without case filling, due to the externally accessible adjustment mechanism.	Limit switch contact assemblies with e-Gauge ${ }^{\circledR}$ can be applied for instruments with case filling.
Ex-Protection	-	-
Technical data	Rated operational voltage: $\max .250 \mathrm{VAC}$ Switching current: $\max .5 \mathrm{~A}$ (ohmic load) $\max .5 \mathrm{~A}$ (inductive load, $\cos \varphi>0.75)$	Rated operational voltage: $8-28 \mathrm{~V} \mathrm{DC}$ Current consumption: $\max .50 \mathrm{~mA}$ Switching capacity: $\max .28 \mathrm{~V} \mathrm{DC}$, $\max .50 \mathrm{~mA}$
Measurement technique	Switching pressure reversal error: accuracy class plus $2-5 \%$ of the span Switching accuracy: $\leq 1.5 \times$ accuracy class Ambient temperature: $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
CE-Marking	Measuring instruments with micro switch basically bear the CE-mark for electromagnetic compatibility and the low voltage directive.	Measuring instruments with e-Gauge ${ }^{\ominus}$ basically bear the CE-mark for electromagnetic compatibility.
Options	- 2 contacts upon request	- More than 2 contacts are not deliverable. - Reaction time deviating in 0.01 s steps, from 0.01 s up to 20 s. - Switching pressure reversal error deviating from 1%, in 0.1% steps from 0 to 25% of the final value.

[^0]: Differential pressure gauges with diaphragm upon request

