Application

For fluid and gaseous media which are not highly viscous and do not tend to crystallize. The medium must be compatible with the wetted parts; for various applications where a built-in square case is required, e.g. switchboards, electrical control panels, or control boxes

Nominal Case Sizes

96 (3.78 x 3.78 "), 144 (5.67×5.67 ")

Accuracy Class

1.0 according to EN $837-1$ (i.e. max. $\pm 1.0 \%$ of full scale value)

Pressure Ranges (EN 837-1)

0-0.6 up to 0-1000 bar (0-10 up to $0-15,000$ psi)
also all standard vacuum and compound ranges

Pressure Limitations (EN 837-1)

Steady pressure:	full scale value
Cyclic pressure:	90% of full scale value
Temporary:	130% of full scale value

Temperature Limitations

Ambient temperature: -40 to $+60^{\circ} \mathrm{C}\left(-4 \ldots+140{ }^{\circ} \mathrm{F}\right)$
Medium temperature: max. $+60^{\circ} \mathrm{C}\left(+140^{\circ} \mathrm{F}\right)$ soft soldered
max. $+100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$ silver brazed / argon arc welded

Temperature Caused Error

The error caused by temperatures differing from the reference temperature of $+20^{\circ} \mathrm{C}\left(+68^{\circ} \mathrm{F}\right)$ is significant. In correspondence with EN $837-1$ it may be up to 0.4% per each $+10^{\circ} \mathrm{C}\left(+18^{\circ} \mathrm{F}\right)$.
Protection Type (EN 60529 / IEC 529)
IP 43
Further information about advantages, applications, specifications and pressure ranges of Bourdon tube pressure gauges of accuracy class 1.0 to 2.5 can be found on general information leaflet 1000.

Standard Configuration

Connection

G1⁄2 B (1⁄2" BSP) lower back connection (standard)

Wetted Parts

Version-1: Socket = brass
Bourdon tube:
≤ 40 bar = bronze, C-form, soft-soldered
≥ 60 bar = bronze, helical, silver brazed
1000 bar $=316$ stainl. steel (1.4571), helical, silver brazed
Version -3: Socket: $=316$ stainless steel (1.4571)
Bourdon tube:
≤ 40 bar $=316$ stainl. steel (1.4571), C-Form, argon arc welded
≥ 60 bar $=316$ stainl. steel (1.4571), helical, argon arc welded

Movement

Brass / German silver
Dial
Aluminum alloy, black figures, white background

Pointer

Aluminum alloy black

Case

Square case with black front frame (carbon steel), model RQS with narrow rim, model RQB with wide rim, clamp clip for panel mounting

Lens

Single strength glass

Optional Special Configurations

- Process connection $1 / 2{ }^{2}$ NPT, others upon request
- Wetted parts Monel upon request
- Inlet port restrictor screw brass or stainless steel
- Special scales e.g. dual ranges, combination pressure and temperature ranges, fine division (with test gauge pointer)
- Receiver gauge 0.2-1 bar or 3-15 psi
- Movement stainless steel (wear and corrosion resistant)
- Higher pressure ranges upon request
- Nom. size 192 (7.56x7.56") upon request
- Other than vertical installation, e.g. inclined 45° backwards
- Electrical accessories, see data sheets 1590 and 9000 ff.

How to Order:

Please specify:
Model code:
RQB = Front frame with wide rim RQS = Front frame with narrow rim

Wetted parts: $\quad \mathbf{- 1}$ or $\mathbf{- 3}$, compare left
Pressure range: according EN 837-1
e.g. 0-4 bar or-1/+9 bar

Process connection: \quad G $1 / 2$ B ($1 / 2$ " BSP) (= standard) or $1 / 2^{\prime \prime}$ NPT, others upon request

Special configurations: (see above)
Examples for Ordering Information:

- RQS 96-3, 0-6 bar, G ½ B
- RQB 144-1, -1/+9 bar, ½" NPT

Dimensions and Weight

Dimensions (mm / inches) and Weight (kg / lb)

Nom. Size A	$\mathrm{a}^{1)}$	a1 ${ }^{2)}$	b	C	c1	c2	c3	d	e	G	G1	g	g1	s2	SW	T	Weight (approx.)
$\begin{gathered} 96 \\ 3.78 \end{gathered}$	$\begin{gathered} 75 \\ 2.95 \end{gathered}$	$\begin{gathered} 88 \\ 3.46 \end{gathered}$	$\begin{gathered} 48 \\ 1.89 \end{gathered}$	$\begin{gathered} 6 \\ .24 \end{gathered}$	$\begin{gathered} 3 \\ .12 \end{gathered}$	$\begin{aligned} & 20 \\ & .08 \end{aligned}$	$\begin{aligned} & 19 \\ & .75 \end{aligned}$	$\begin{gathered} 90 \\ 3.54 \end{gathered}$	$\begin{gathered} 30 \\ 1.18 \end{gathered}$	$\begin{gathered} \text { G } 1 / 2 \text { B } \\ 1 / 2^{\prime \prime} \text { BSP } \end{gathered}$	½" NPT	$\begin{gathered} 88 \\ 3.46 \end{gathered}$	$\begin{gathered} 87 \\ 3.43 \end{gathered}$	$\begin{aligned} & 8 \\ & .31 \end{aligned}$	$\begin{gathered} 17 \\ .67 \end{gathered}$	$\begin{gathered} 92 \\ 3.62 \end{gathered}$	$\begin{aligned} & 0.75 \\ & 1.65 \end{aligned}$
144	116	134						136	$\begin{gathered} 52 \\ 2.05 \end{gathered}$							138	1.30
5.67	4.57	5.28						5.35								5.43	2.87
192	164							184								186	2.00
7.56	6.46	-						7.24								7.32	4.41

${ }^{1)}$ model RQB
${ }^{2}$) model RQS

